16 research outputs found

    Physical Layer Split for User Selective Uplink Joint Reception in SDN Enabled Cloud-RAN

    Get PDF
    International audienceTo meet quality of service requirements on the uplink of future cellular networks, we need to exploit inter-cell interference among users eligible for cooperation. Cloud Radio Access Network (C-RAN) architecture is particularly favorable to realize cooperation between users in neighboring cells, since signal detection is realized in the same processing unit. The novel technology of Software Defined Networking (SDN) increases the flexibility of network optimization and scalability of computational resources. We propose a C-RAN based architecture and a practical scheme of realizing uplink joint processing in critical scenarios where strong interference would affect cell-edge users. We consider characteristics of a real network and novel technological solutions necessary for reliable transmission over the radio access network. The central idea is to split the physical layer processing between Remote Radio Heads (RRHs) and the central processing unit only for selected users in enabling cooperation and maintaining affordable fronthaul transport infrastructure. In practice, the joint detection for selected few co-channel users would simplify the required multiuser channel estimation while improving overall performance and cell-edge users' quality-of-service (QoS)

    Virtualization of Radio Access Network by Virtual Machine and Docker: Practice and Performance Analysis

    Get PDF
    International audienceSoftware defined networking (SDN) and network function virtualization (NFV) are the embraced technologies for the backhauling of future 5G networks. Virtual Machine (VM) and Docker container based deployments have received much attention. This paper presents the virtualization of a prototyped software defined radio access network (RAN) architecture by using VMs and Docker containers. In addition, it provides an analytical model for the generalized software defined RAN architecture with the practice of VM based and Docker container based implementations. Using measurements obtained from the two testbeds and the introduced queuing model, we compare their performances and analyze the two different architectures. Results verify the superiority of the Docker technology. Some observations from the behavior of the testbeds are concluded for a better understanding of the VM and Docker container based technologies for the future development of 5G SDN controller

    Multi-cell Coordination in Cloud RAN: Architecture and Optimization

    Get PDF
    International audienceCoordination between neighboring cells is intended to be implemented in future mobile networks, since it promises significant performance gains. Despite low-latency cooperation made possible by Cloud Radio Access Networks (C-RAN), practical feasibility and improvements brought to a real system were still to be evaluated. We define in this paper an architecture based on the abstraction and scalability provided by Software Defined Networking (SDN) enabling multi-cell coordination both on the uplink and downlink. We also evaluate gains offered by the proposed coordination algorithms under practical conditions. The described proof-of-concept platform shows not only why multi-cell cooperation is useful, but also how to make it happen

    A flexible network architecture for 5G systems

    Get PDF
    In this paper, we define a flexible, adaptable, and programmable architecture for 5G mobile networks, taking into consideration the requirements, KPIs, and the current gaps in the literature, based on three design fundamentals: (i) split of user and control plane, (ii) service-based architecture within the core network (in line with recent industry and standard consensus), and (iii) fully flexible support of E2E slicing via per-domain and cross-domain optimisation, devising inter-slice control and management functions, and refining the behavioural models via experiment-driven optimisation. The proposed architecture model further facilitates the realisation of slices providing specific functionality, such as network resilience, security functions, and network elasticity. The proposed architecture consists of four different layers identified as network layer, controller layer, management and orchestration layer, and service layer. A key contribution of this paper is the definition of the role of each layer, the relationship between layers, and the identification of the required internal modules within each of the layers. In particular, the proposed architecture extends the reference architectures proposed in the Standards Developing Organisations like 3GPP and ETSI, by building on these while addressing several gaps identified within the corresponding baseline models. We additionally present findings, the design guidelines, and evaluation studies on a selected set of key concepts identified to enable flexible cloudification of the protocol stack, adaptive network slicing, and inter-slice control and management.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the E

    Software-Defined Mobile Backhaul for Future Train to Ground Communication Services

    Get PDF
    International audienceSoftware Defined Networking (SDN) has attracted tremendous interest in the telecommunication industry due to its ability to abstract, manage and dynamically re-configure end-to-end networks from a centralized controller. Though SDN is considered to be a suitable candidate for various use cases in mobile networks, none of the work so far has discussed its advantages and actual realization for Train-to-Wayside Communication System (TWC). In this paper, for the first time, the architecture and use cases of SDN controlled mobile backhauling framework for TWC is proposed. We discuss how our proposed architecture can efficiently handle mobility management and also provide dynamic quality-of-service (QoS) for different services on board. As a first step, a software prototype is developed using industrial standard OpenDayLight SDN controller to have our architecture evaluated. Since the automotive sector is being considered to be an important driver for 5G network, our SDN based mobile backhauling solution can be positioned in 5G where SDN plays an important role

    Identifying 5G system enhancements: enabling technologies for multi-service networks

    Get PDF
    Proceeding of: 2018 IEEE Conference on Standards for Communications and Networking (CSCN)The fifth generation (5G) of mobile and wireless communications networks aims at addressing a diverse set of use cases, services, and applications with a particular focus on enabling new business cases via network slicing. The development of 5G has thus advanced quickly with research projects and standardization efforts resulting in the 5G baseline architecture. Nevertheless, for the realization of native end-to-end (E2E) network slicing, further features and optimizations shall still be introduced. In this paper, we provide a gap analysis of current 5G system (5GS) with respect to some specific enhancements and detail our insights on the enabling innovations that can fill the identified gaps. We will then discuss the essential building blocks and design principles of an evolved 5G baseline architecture capitalizing on the innovations that are being developed.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the EU

    Enhancing LTE with Cloud-RAN and Load-Controlled Parasitic Antenna Arrays

    Get PDF
    Cloud radio access network systems, consisting of remote radio heads densely distributed in a coverage area and connected by optical fibers to a cloud infrastructure with large computational capabilities, have the potential to meet the ambitious objectives of next generation mobile networks. Actual implementations of C-RANs tackle fundamental technical and economic challenges. In this article, we present an end-to-end solution for practically implementable C-RANs by providing innovative solutions to key issues such as the design of cost-effective hardware and power-effective signals for RRHs, efficient design and distribution of data and control traffic for coordinated communications, and conception of a flexible and elastic architecture supporting dynamic allocation of both the densely distributed RRHs and the centralized processing resources in the cloud to create virtual base stations. More specifically, we propose a novel antenna array architecture called load-controlled parasitic antenna array (LCPAA) where multiple antennas are fed by a single RF chain. Energy- and spectral-efficient modulation as well as signaling schemes that are easy to implement are also provided. Additionally, the design presented for the fronthaul enables flexibility and elasticity in resource allocation to support BS virtualization. A layered design of information control for the proposed end-to-end solution is presented. The feasibility and effectiveness of such an LCPAA-enabled C-RAN system setup has been validated through an over-the-air demonstration

    Approche de contrôle orientée services basée sur SDN pour les futurs réseaux mobiles

    No full text
    Software-Defined Networking (SDN) has emerged as a new intelligent architecture for network programmability. The primary idea behind SDN is to move the control-plane outside the switches and enable external control of data-plane through a logical software entity called controller. Such approach benefits mobile network management by brining complete intelligence to the logically centralized controller. Network Function Virtualization (NFV) is the process of relocating or migrating network functions from dedicated hardware to generic servers. SDN and NFV are two closely related technologies that are often used together. The traditional mobile network architecture due to its strongest coupling between control and data planes along with limitations in scalability and flexibility requires the usage of cloud computing along with the recent revolutionary approaches in networking such as SDN and NFV to have an architecture that deploys on demand "Network-as-a-Service" for users. The global research focus of this thesis falls in to two main use cases of next generation mobile networks such as Telco and Vertical. In the telco use cases, we exploit the advantages of SDN to have flexible control framework for both Self-Organizing Networks (SON) and dynamic user processing split. In vertical use case, we apply various advantages of SDN and OpenFlow protocol to efficiently utilize the scare radio resources of wireless backhaul network in the train-to-ground communication system. Our SDN framework in general can be an efficient and alternative solution for RAN management i.e. Radio Optimization, Network Optimization, Mobility Management and Load Balancing can be achieved with such framework. Through analysis and experimentation of SDN frameworks for RAN, we shows that the proposed solutions can bring set of advantages to wireless networks such as flexibility, programmability, unified management, and enables new servicesLe SDN (Software-Defined Networking) émerge comme une nouvelle architecture pour la programmation des réseaux. A l'origine, l'idée du SDN est de déplacer le plan de contrôle à l'extérieur des équipements, et de permettre ainsi un contrôle déporté de l'ensemble depuis une entité logicielle logique nommée "contrôleur". Le principal avantage d'une telle approche est de centraliser donc toute l'intelligence de gestion du réseau dans le contrôleur, qui s'appuie pour cela sur des protocoles standard et assure par ce biais la reprogrammation de la totalité de la partie du réseau sous son contrôle. L'évolution technologique vers le SDN est toujours en cours dans des scénarios de déploiement programmable et flexible des réseaux mobiles. Le NFV (Network Function Virtualization) est le processus de déplacement ou de migration des fonctions réseau d'un équipement dédié de réseau vers des serveurs génériques dans le Cloud. Les SDN et NFV sont deux technologies étroitement liées qui sont souvent utilisées ensemble. Le couplage fort entre les plans de contrôle et de données, ainsi que les limitations en matière de passage à l'échelle et de flexibilité, font que la virtualisation des réseaux mobiles actuels nécessite non seulement l'utilisation du Cloud Computing mais aussi les récentes innovations telles que SDN et NFV pour pouvoir permettre un déploiement à la demande des services réseaux (Network-as-a-Service) aux utilisateurs. Les lignes de recherche globales de cette thèse s'inscrivent dans deux principaux cas d'utilisation. Ces cas d'utilisation, bien qu'appelés de la "prochaine génération de réseaux mobiles", sont le "Telco" et le "Vertical", qui apparaissent ici couplés, les deux étant traditionnellement complètement séparés. Dans les cas d'utilisation de "télécommunications", nous exploitons les avantages de SDN pour avoir un cadre de contrôle flexible pour les réseaux d'auto-organisation (SON) et la division de traitement dynamique des utilisateurs. Dans le cas d'utilisation de "verticale", nous appliquons divers avantages du protocole SDN et OpenFlow pour utiliser efficacement les ressources radio du réseau de backhaul dans le système de communication train-sol. Notre cadre d'étude du SDN, en général, peut être une solution efficace et alternative pour la gestion RAN (Radio Access Network), c'est-à-dire pour des objectives comme l'optimisation des ressources radio, l'optimisation du réseau, la gestion de la mobilité et l'équilibrage de la charge, peuvent être atteint avec ce cadre. Grâce à l'analyse et l'expérimentation concrète des SDN et NFV pour le RAN, nous montrons que les solutions proposées dans ce travail peuvent apporter un faisceau d'avantages évidents aux réseaux mobiles tels que la flexibilité, la programmabilité, la gestion unifiée et la mise en œuvre de nouveaux service

    Approche de contrôle orientée services basée sur SDN pour les futurs réseaux mobiles

    No full text
    Le SDN (Software-Defined Networking) émerge comme une nouvelle architecture pour la programmation des réseaux. A l'origine, l'idée du SDN est de déplacer le plan de contrôle à l'extérieur des équipements, et de permettre ainsi un contrôle déporté de l'ensemble depuis une entité logicielle logique nommée "contrôleur". Le principal avantage d'une telle approche est de centraliser donc toute l'intelligence de gestion du réseau dans le contrôleur, qui s'appuie pour cela sur des protocoles standard et assure par ce biais la reprogrammation de la totalité de la partie du réseau sous son contrôle. L'évolution technologique vers le SDN est toujours en cours dans des scénarios de déploiement programmable et flexible des réseaux mobiles. Le NFV (Network Function Virtualization) est le processus de déplacement ou de migration des fonctions réseau d'un équipement dédié de réseau vers des serveurs génériques dans le Cloud. Les SDN et NFV sont deux technologies étroitement liées qui sont souvent utilisées ensemble. Le couplage fort entre les plans de contrôle et de données, ainsi que les limitations en matière de passage à l'échelle et de flexibilité, font que la virtualisation des réseaux mobiles actuels nécessite non seulement l'utilisation du Cloud Computing mais aussi les récentes innovations telles que SDN et NFV pour pouvoir permettre un déploiement à la demande des services réseaux (Network-as-a-Service) aux utilisateurs. Les lignes de recherche globales de cette thèse s'inscrivent dans deux principaux cas d'utilisation. Ces cas d'utilisation, bien qu'appelés de la "prochaine génération de réseaux mobiles", sont le "Telco" et le "Vertical", qui apparaissent ici couplés, les deux étant traditionnellement complètement séparés. Dans les cas d'utilisation de "télécommunications", nous exploitons les avantages de SDN pour avoir un cadre de contrôle flexible pour les réseaux d'auto-organisation (SON) et la division de traitement dynamique des utilisateurs. Dans le cas d'utilisation de "verticale", nous appliquons divers avantages du protocole SDN et OpenFlow pour utiliser efficacement les ressources radio du réseau de backhaul dans le système de communication train-sol. Notre cadre d'étude du SDN, en général, peut être une solution efficace et alternative pour la gestion RAN (Radio Access Network), c'est-à-dire pour des objectives comme l'optimisation des ressources radio, l'optimisation du réseau, la gestion de la mobilité et l'équilibrage de la charge, peuvent être atteint avec ce cadre. Grâce à l'analyse et l'expérimentation concrète des SDN et NFV pour le RAN, nous montrons que les solutions proposées dans ce travail peuvent apporter un faisceau d'avantages évidents aux réseaux mobiles tels que la flexibilité, la programmabilité, la gestion unifiée et la mise en œuvre de nouveaux servicesSoftware-Defined Networking (SDN) has emerged as a new intelligent architecture for network programmability. The primary idea behind SDN is to move the control-plane outside the switches and enable external control of data-plane through a logical software entity called controller. Such approach benefits mobile network management by brining complete intelligence to the logically centralized controller. Network Function Virtualization (NFV) is the process of relocating or migrating network functions from dedicated hardware to generic servers. SDN and NFV are two closely related technologies that are often used together. The traditional mobile network architecture due to its strongest coupling between control and data planes along with limitations in scalability and flexibility requires the usage of cloud computing along with the recent revolutionary approaches in networking such as SDN and NFV to have an architecture that deploys on demand "Network-as-a-Service" for users. The global research focus of this thesis falls in to two main use cases of next generation mobile networks such as Telco and Vertical. In the telco use cases, we exploit the advantages of SDN to have flexible control framework for both Self-Organizing Networks (SON) and dynamic user processing split. In vertical use case, we apply various advantages of SDN and OpenFlow protocol to efficiently utilize the scare radio resources of wireless backhaul network in the train-to-ground communication system. Our SDN framework in general can be an efficient and alternative solution for RAN management i.e. Radio Optimization, Network Optimization, Mobility Management and Load Balancing can be achieved with such framework. Through analysis and experimentation of SDN frameworks for RAN, we shows that the proposed solutions can bring set of advantages to wireless networks such as flexibility, programmability, unified management, and enables new service
    corecore